

Voluntary Programs related to Zhaga Book 20

September 29, 2021

Michael Myer Senior Researcher

PNNL is operated by Battelle for the U.S. Department of Energy

Multiple voluntary programs occurring in North America related to or similar to Zhaga Book 20

- U.S. Department of Energy:
 - L-Prize
 - IoT Upgradeable Lighting Challenge
- National Electrical Manufacturers Association
 - LSD ## document in production

L-Prize Phases and Awards

Pacific

Northwest

Consistent, Technical Requirements for All Phases

Efficacy	Quality of Light	Connectivity	Product Life Cycle
✓+□ Luminaire efficacy	 ✓ Chromaticity ✓ Dimming range ✓ Glare control ✓ Light output ✓ Spectral data reporting ✓ +□ Color rendition ✓ +□ Flicker □ White-tunable 	 ✓ Interoperability ✓ Addressability ✓ Energy reporting ✓ Lighting control strategies ✓ Luminaire-level lighting control ✓ +□ System resilience ✓ +□ Fault detection and diagnostics ✓ +□ Grid services capable □ Sensor ready and upgradeable □ Ease of install and configuration 	 ✓ Driver lifetime ✓ Chromaticity Maintenance ✓ +□ Replaceable components ✓ +□ Lumen maintenance □ Design for disassembly Possible Points One point (+1) will be avi include standardized point compliance with D4i or A established the Digital II ANSI C137.4. One point (+1) will be avi standardized sensor point compliance with Zhaga

✓ Requirement

□ Indicates optional points

varded for luminaires/systems that wer, data, and sensor capabilities in ANSI C137.4-202X (forthcoming) as Iumination Interface Alliance and/or

varded for luminaires that incorporate a t and power/data connections in Book 20 established by the Zhaga

IoT-Upgradeable Lighting Challenge: Sensor Shape and Connections

Transition

Current Situation

Many different sensor shapes, sizes, and connection methods across manufacturer

Need to shift away from proprietary connector / analog technology to standardized digital technology

IoT-Upgradeable Challenge

Standardizes on a set of shapes, sizes, and electrical / data

Challenge Approach

Make controls and sensors more accessible to broader set of users

- Reduce cost and complexity of getting sensors into buildings
- Price comparable to non-upgradeable products
- Simplify controls installation
- Reduce risk of being locked-in to proprietary or outdated technologies
- Support standardization of lighting, energy, diagnostics data for smart-buildings

Deployment focused and voluntary

Partner with industry and standards organizations

Match supply with demand

September 30, 2021

7

IoT-Upgradeable Lighting Challenge Lighting Sensor Standardization

Zhaga Book 20: Smart Interface between indoor luminaires and communication/sensing modules

- 4 shapes / sizes &
- Standard electrical configuration
- International consortium

LSD-XX: Physical Interface of Luminaire Integrated Control Devices (in development)

- Zhaga + additional shapes/sizes
- Developed by NEMA member mfrs
- Includes old out-of-scope analog sensor shape/sizes and proprietary shapes/sizes
- Too many or proprietary sensor shape / sizes may affect future upgradeability

PNNL surveyed 20 North American manufacturers and reviewed over 60 sensors

Supplied data to both Zhaga and NEMA – informed their documents

IoT Challenge requires: 4 Zhaga shapes / sizes + 1 NEMA shape/size

Encourages standardization and reduces upgradeability uncertainty

Example Information About Sensor Space from Zhaga or NEMA

IoT-Challenge

- Standardizes the physical and electrical connections for the sensor
- **4** sensor-type options

Key Requirements

• 3 Options for Sensor Port

Dimensions

- 0.9" x 2.4" rectangular
- 0.7" x 1.7" rectangular
- 0.9" circular
- Standardized plug connector
- D4i power/data compliant

OVAL TOP OVAL BOTTOM

- Standardizes the physical connections for the sensor
- **≈12** sensor-type options

Key Requirements

- ≈7 Options for Sensor Port Dimensions
 - many
- NO standardized plug connector
- Doesn't specify D4i power/data compliance

* 4 of the NEMA shape/sizes match Zhaga

OPTION 3 - CYLINDER TOP- CYLINDER BOTTOM

September 30, 2021

10

IoT-Challenge Sensor Research

PNNL Compiled list

• 20 North American manufacturers

66 sensors

- Luminaire focused
- Low voltage, DALI

Retention Ring

Push-in Terminals

Analog 0-10 V vs. D4i Digital LED Drivers

0 – 10 V Analog Driver

- Most common today
- Hold over from fluorescent
- Inefficient \rightarrow one-way communication signal in form of a voltage signal between 0 – 10 V. Can send only 1 channel of information
- Low first cost and contractors very familiar with the technology

D4i Certified Digital Driver

- Built on DALI-2 technology, overlaps with ANSI C137.4
- Provides power to sensors
- 2-way communication
- Standardizes lighting system data for energy use, hours of operation, diagnostic information
- Designed to work with Zhaga sensor
- REQUIRED AS PART OF CHALLENGE

D4i Certified LED Drivers

Multiple choices of protocols outside fixture &

Other Networks

Allows for flexibility of use

Challenge and L-Prize Comparison

Metric	Challenge	L-Prize
Market Proximity	Products close to market Uses currently available tech	Stretch for products Uses new tech and inno be currently available
Scope	Luminaire only	Full system
Timeframe	1 year	3 years
Location of manufacturer	Manufacturing agnostic	Requires US companies manufacturing content
Description	Good to excellent performance (quality, efficacy, controllability)	Superior performance (quality, efficacy, contro
Why / Scope	Addresses a specific market need/gap (IoT upgradeable)	Comprehensive - Addre energy, visual quality, co sustainability, US conte
Price component	<10% or <\$20 increment compared to non- upgradeable fixture	L Prize does not mention s
Monetary Incentive	No monetary prize	Significant monetary prize

ovations that may not

s, awards US

llability, sustainability)

esses all aspects of onnectivity, nt and manufacturing

system price

To learn more...

Michael Myer

RESEARCHER

Phone: 509-375-7292 Michael.myer@pnnl.gov

902 Battelle Boulevard P.O. Box 999 Richland, WA 99352

www.pnnl.gov

